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Abstract
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1 Introduction

Options serve as important tools for investors to either bet on or hedge against future

events and price movements. Given this, researchers have long argued that option

prices reflect investors’expectations and thus contain forward-looking information

on underlying asset prices (e.g., Ross (1976a) and Breeden and Litzenberger (1978)).

The recent recovery literature ignited by Ross (2015) has focused on eliciting infor-

mation from option prices on forward-looking expected returns (Martin (2017), Tang

(2018), Jensen, Lando, and Pedersen (2019), Kadan and Tang (2019), and Martin

and Wagner (2019)). A limitation, however, is that many key assets and portfolios

do not possess actively-traded options. For example, commonly-used systematic fac-

tors such as size, value, and momentum do not have traded options. Small stocks

and a variety of alternative assets also rarely have active option trading. This pa-

per develops a new methodology to relax this limitation and recover option-implied

forward-looking variances and covariances of assets and portfolios, even if they do

not possess traded options. Empirically, we show that such recovered estimates pro-

vide useful insights on the prediction of jumps for systematic factors and individual

stocks and on optimal portfolio choice.

Our methodology relies on the conventional linear factor representation of asset

returns (Merton (1973b), Ross (1976b)). Specifically, we start with an arbitrary

factor structure in which asset returns are linear combinations of the factors and

idiosyncratic returns. Calculating the second moment of this relation induces a new

factor structure in which each asset’s variance is a linear combination of factor vari-

ances and covariances, and the new factor loadings are cross products of the original

factor loadings. Thus, if the original factor model has K factors, the new factor

model for volatility consists of K(K+1)
2

factors. This new factor structure applies not

only to historical variances, but also to forward-looking (implied) ones – typically

obtained from option prices. As usual, these implied volatilities are calculated un-

der the risk-neutral measure as opposed to the physical (true) measure. Our first

key result (Theorem 1) establishes that, under mild assumptions, the volatility factor

structure is preserved under the risk-neutral measure, whereby the factor loadings can
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still be calculated under the physical measure. The resulting hybrid factor structure

consisting of factors calculated under the risk-neutral measure and factor loadings

calculated under the physical measure facilitates the model’s estimation.

To estimate and exploit this new factor structure, we develop a modification

of the Fama-MacBeth (1973) estimation procedure consisting of three stages. The

first stage is identical to the standard Fama-MacBeth approach, in which we regress

returns of assets on factors over time to estimate factor loadings. In the second

stage, we restrict attention to assets that do have traded options, and we cross-

sectionally regress option-implied variances of these assets on cross products of the

factor loadings estimated in the first stage. This results in an estimated risk-neutral

implied variance-covariance matrix of the factors. Our second main result (Theorem

2) guarantees that the estimation procedure in this stage yields a unique solution.

In the third stage, we use outputs from the previous two stages along with the

underlying factor structure to calculate: (i) the implied covariance between any pair

of individual assets – even those without options; and (ii) the implied systematic

volatility of all assets – even those without options. This approach also yields a

decomposition of implied variances into systematic and idiosyncratic components –

for assets that possess traded options.

Empirically, we apply our estimation method to all CRSP common stocks over a

sample period spanning January 1996 to December 2017, where the subset of stocks

that possess traded options is taken to be constituents of the S&P 500 index during

this period. While our approach can be applied to any linear factor structure for re-

turns, for concreteness, we base our estimations on the Fama-French-Carhart (FFC)

four-factor model (Fama and French (1993), Carhart (1997)). To demonstrate the

usefulness of our framework, we present three applications in which our methodology

is used to recover forward-looking moments for assets, factors, and portfolios that do

not have actively-traded options.

In the first application, we consider the implied-volatility slope, the difference

between at-the-money and out-of-the-money implied volatilities. Prior research has

shown that the slope is useful in predicting downward jumps of individual stocks

(Xing, Zhang, and Zhao (2010) and Yan (2011)). More generally, there is a volumi-
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nous literature showing that option prices reflect the jump risk associated with the

underlying assets.1 This literature is limited to assets with actively-traded options.

We use our methodology to estimate the implied-volatility slope of the FFC factors

and use the estimated slope to predict downward jumps of the factors. This is par-

ticularly useful for the size, value, and momentum factors given that there do not

exist options actively traded on these factor portfolios.

In the second application, we consider the volatility spread, the difference between

the forward-looking (implied) risk-neutral volatility and the historical volatility cal-

culated under the physical measure. Bali and Hovakimian (2009) show that this

spread has predictive power on future stock returns. This insight, however, can only

be applied to stocks that possess actively-traded options. We first show that the

effect of the spread is primarily attributed to its systematic component. We then

use this observation and our methodology to extend Bali and Hovakimian’s result

to small stocks, which often do not have traded options. We find that a higher

systematic volatility spread is associated with a higher likelihood of return jumps.

The third application illustrates the value of using the forward-looking variance-

covariance matrix obtained from our modified Fama-MacBeth approach for optimal

portfolio choice. Specifically, we consider a mean-variance investor whose investment

opportunity set consists of sector exchange-traded funds (ETFs) and a risk-free as-

set. The investor chooses portfolio weights to maximize her utility and rebalances

her portfolio on a monthly basis. We show that optimal portfolios constructed based

on our estimated forward-looking variance-covariance matrix feature higher average

returns, higher Sharpe ratios, more right skewness, and less heavy tails relative to

those constructed based on historical moments.2 We also show that our model out-

performs the multivariate GARCH model (Engle and Sheppard (2001)), which is an

1See, for example, Cox and Ross (1976), Merton (1976a,b), Ball and Torous (1985), Naik and
Lee (1990), Amin and Ng (1993), Bakshi, Cao, and Chen (1997), Bates (2000), Duffi e, Pan, and
Singleton (2000), Anderson, Benzoni, and Lund (2002), Pan (2002), and Eraker, Johannes, and
Polson (2003).

2Our forward-looking moments are calculated under the risk-neutral measure, introducing a
potential bias in the estimation (which should be under the physical measure). This bias, however,
is dwarfed by the information content of our estimates, as evidenced by the superior performance
they induce.
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alternative method for estimating forward-looking variances and covariances.

Our paper is related to the growing recovery literature. Ross (2015) proposes

that option prices can be used to uniquely recover the entire physical distribution of

market returns. Borovička, Hansen, and Scheinkman (2016) criticize Ross’s approach

for restricting the dynamics of the stochastic discount factor in an unrealistic manner.

Subsequent papers focus on recovering the first moment of asset returns from option

prices based on milder assumptions (e.g., Martin (2017), Kadan and Manela (2018),

Tang (2018), Jensen, Lando, and Pedersen (2019), Kadan and Tang (2019), and

Martin and Wagner (2019)). Instead, our paper concentrates on the recovery of

second moments of assets, factors, and portfolios that do not have traded options,

building on a linear factor structure for the underlying asset returns.

Several prior papers have considered option-implied correlations, restricting at-

tention to assets that do have traded options and making specific assumptions on the

correlation structure. Skinzi and Refenes (2005), Driessen, Maenhout, and Vilkov

(2009), and Buss, Schönleber, and Vilkov (2018) propose methods for estimating av-

erage option-implied correlation, assuming equal correlations between all asset pairs.

Buss and Vilkov (2012) calculate option-implied betas by relying on the realized cor-

relations between assets adjusted for a parametric premium reflected in options. Our

modified Fama-MacBeth approach offers a method for recovering implied variances

and covariances for a variety of assets (whether or not they have options) with-

out resorting to an adjustment and not assuming equal correlations between asset

pairs. Liu (2018) estimates an option-implied correlation between the disaster risk

of individual stocks and that of the market index. Our approach yields pairwise cor-

relation estimates for arbitrary pairs of factors and stocks without relying on strong

parametric assumptions.

Our paper is related to the large body of research on the factor structure of asset

returns originated by Merton (1973b) and Ross (1976b). Empirically, researchers

have proposed a variety of factor models to explain variations in stock returns (e.g.,

Chen, Roll, and Ross (1986), Fama and French (1993, 2016), Carhart (1997), and

Hou, Xue, and Zhang (2015)). Our paper helps connecting the factor structure

of stock returns to a corresponding factor structure for option-implied volatility.
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The paper is also related to the growing literature on the factor structure of option

prices (e.g., Serban, Lehoczky, and Seppi (2008), Christoffersen, Fournier, and Jacobs

(2018)).

Section 2 introduces our theoretical framework and estimation method. In Section

3, we conduct estimation based on the FFC four-factor model. Section 4 presents

applications and Section 5 concludes. A technical proof is presented in the Appendix.

2 Theoretical Framework and EstimationMethod-
ology

In this section we derive a factor structure for option-implied volatility and explain

how it can be used to estimate forward-looking implied variances and covariances for

a variety of assets and portfolios that may not have actively-traded options.

2.1 Theoretical Framework

Consider an economy with N assets n = 1, 2, ..., N. Assume that the returns of all

assets follow a linear K-factor structure3

r = α+ βf + ε, (1)

where r = (r1, ..., rN)′ is an N×1 vector of random asset returns, α = (α1, ..., αN)′ is

an N×1 vector of intercepts, f = (f1, ..., fK)′ is a K×1 vector of factors, β =
(
βn,k

)
is an N × K matrix of factor loadings, and ε = (ε1, ..., εN)′ is an N × 1 vector of

idiosyncratic returns. We make the following two assumptions:

A1. E (ε|f) = 0

A2. E (εε′|f) is a diagonal matrix.

Taking variance on both sides of (1) and noting that A1 implies that ε and f are

uncorrelated yield

Σr = βΣfβ′ + Σε, (2)

3Hereafter we use boldface to designate vectors and matrices.
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where Σr,Σf , and Σε are the variance-covariance matrices of the asset returns,

factors, and idiosyncratic returns, respectively. Therefore, if the asset returns follow

the linear factor structure (1), the variances and covariances of asset returns also

follow a factor structure in which the variances and covariances of the return factors

serve as new factors and the variance of the idiosyncratic returns is the intercept.

To illustrate this new factor structure, consider the diagonal of Σr, which consists

of the variances of the N assets, Σr
n,n. Then, (2) implies that for each n = 1, ..., N,

the variance of asset n is given by the new factor structure

Σr
n,n =

K∑
k=1

K∑
l=1

βn,kβn,lΣ
f
k,l + Σε

n,n. (3)

Namely, if we start with a given factor structure for returns consisting of K factors,

then we obtain a new factor structure for variances of returns consisting ofK(K+1)/2

factors, of whichK are factor variances and K(K−1)
2

are factor covariances. Moreover,

the factor loadings in the new model are cross products of the original factor loadings,

and the new intercept is the variance of the idiosyncratic return.

Similarly, considering the off-diagonal terms in (2), for any two assets m and n,

the covariance between the returns, Σr
m,n, follows the new factor structure

Σr
m,n =

K∑
k=1

K∑
l=1

βm,kβn,lΣ
f
k,l, (4)

with the same K(K+1)/2 factors as above but different loadings. These off-diagonal

factor structures have no intercept owing to A1 and A2.

The relationship in (2) should hold for both historical and future return variances

and covariances, as long as returns (both past and future) are governed by the factor

structure (1). A conventional way to estimate future volatilities is by assuming

some option-pricing model, such as Black-Scholes (Black and Scholes (1973), Merton

(1973a)), and then applying this model to derive implied volatilities from options.

To this end, we divide the universe of N assets into two subsets. Assets 1, ..., L are

assumed to have traded options (L < N), whereas assets L + 1, ..., N are assumed

not to have traded options.
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A complication in using the option-implied volatilities of assets 1, ..., L is that

these implied volatilities are calculated under the risk-neutral measure, whereas as-

sumptions A1 and A2 along with the factor structures have been stated under the

physical (true) measure of the return distribution. To facilitate the use of these im-

plied volatilities, we will now show that under our rather standard assumptions, the

same factor structure (2) also holds under the risk-neutral measure. Intuitively, this

follows because in a world in which all returns are governed by a factor structure,

any stochastic discount factor (SDF) must be a function of the factors, and thereby

orthogonal to the idiosyncratic returns. Moreover, the SDF is (up to a constant)

a Radon-Nikodym derivative, facilitating a change of measure between the physical

and risk-neutral measures. Thus, assumptions A1 and A2, which are stated under

the physical measure, imply that, under the risk-neutral measure, ε and f must be

uncorrelated, and the elements of ε must also be uncorrelated.

To see this point formally, let Vr, Vf , and Vε denote the variance-covariance

matrices for the asset returns, factors, and idiosyncratic returns, respectively, under

the risk-neutral measure (of dimensions N × N, K × K, and N × N). Let E∗ (·)
denote the expectation operator under the risk-neutral measure. And, let m (f) > 0

denote a stochastic discount factor (a function of the return factors). Then,

E∗ (ε) = E

(
m (f)

E (m (f))
ε

)
=

E (E (m (f) ε|f))

E (m (f))

=
E (m (f) E (ε|f))

E (m (f))
= 0,

where the first equality follows since m(f)
E(m(f))

is a Radon-Nikodym derivative, the

second by iterated expectations, the third from the fact that m (f) is measurable

with respect to f , and the last by A1. We conclude that all idiosyncratic returns have

zero mean under the risk-neutral measure. An analogous argument shows that the

covariance between the factors and the idiosyncratic returns under the risk-neutral

measure is also zero: E∗ (fε′) = 0. And, a similar application of A2 implies that
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Vε = E∗ (εε′) is diagonal.

We have thus established the following three risk-neutral implications of assump-

tions A1 and A2:

A0∗. E∗ (ε) = 0

A1∗. E∗ (fε′) = 0

A2∗. E∗ (εε′) is a diagonal matrix.

Now, taking variance on both sides of (1) under the risk-neutral measure and

applying A0∗, A1∗, and A2∗, we obtain the following result establishing a risk-neutral

analogue to the factor structure in (2).

Theorem 1 The following linear factor structure holds under the risk-neutral mea-
sure

Vr = βVfβ′ + Vε, (5)

where Vε is a diagonal matrix.

Equation (5) is the fundamental factor relation exploited in this paper. Note that

this equation is a hybrid in the sense that while all variances and covariances are

calculated under the risk-neutral measure, β, the factor loadings in (5), can still be

calculated under the physical measure, and are identical to the factor loadings used

in the original return factor structure (1). The hybrid nature of this relation is key

to our estimation as it facilitates the use of implied-volatility data from options in

combination with factor loadings calculated from historical returns.

There are several challenges in estimating and applying (5). First, only a subset of

L < N assets have traded options. Moreover, there is no easy way to estimate implied

covariances between assets. Thus, for the the implied variance-covariance matrixVr,

only a subset of the diagonal elements are available from data, and none of the off-

diagonal elements is observed. Similarly, Vf andVε, the implied variance-covariance

matrices of the factors and idiosyncratic returns, are not readily available. Indeed,

most conventional factors do not have traded options, and certainly idiosyncratic

returns have no options. We next present a methodology for estimating these latent

implied variances and covariances.
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2.2 Estimation Methodology: A Modified Fama-MacBeth
Approach

The standard Fama-MacBeth (1973) approach starts from a given factor model and

follows two stages to estimate the risk premia associated with the factors. In the

first stage, returns of each test asset (or portfolio) are regressed on the factors over

time to estimate factor loadings (betas). In the second stage, test-asset (or portfolio)

returns are regressed on the factor loadings cross-sectionally to estimate risk premia.

We will show that a modification of the Fama-MacBeth approach consisting of three

stages can be used to estimate the ingredients in (5).

The data required are time series of the K factors, a panel of the returns of the N

assets of which L assets have traded options, and a panel of the implied volatilities

associated with these L assets (derived from options). To facilitate the estimation,

we require that L >> K(K+ 1)/2, namely the number of assets with traded options

is at least an order of magnitude higher than K2.

The first stage is identical to the original Fama-MacBeth approach. We use a

time-series regression in which we regress the returns of the N assets on the factors

over the period t = τ 0, ..., τ to obtain estimates of the factor loadings as of time τ ,

denoted by the N ×K matrix β̂τ .

In the second stage, we rely on Theorem 1 and estimate cross-sectional regressions

of the implied (risk-neutral) variances of the L assets with option trading as of time

τ , V r
n,n,τ (n = 1, ..., L), on cross products of the estimated factor loadings from the

first stage. Specifically, the second stage estimates the cross-sectional model

V r
n,n,τ = λτ +

K∑
k=1

K∑
l=1

V f
k,l,τ β̂n,k,τ β̂n,l,τ + ηn,n,τ , (6)

subject to the constraint that the matrix V̂f
τ =

(
V̂ f
k,l,τ

)
k,l=1,...,K

is symmetric and

positive semidefinite (i.e., a variance-covariance matrix).4

Thus, for each time τ we obtain an estimate V̂ f
k,l,τ of V

f
k,l,τ , the implied covariance

between factor k and factor l (the implied factor variance if k = l). The intercept in

4Practically, we impose the positive semidefiniteness constraint by requiring all eigenvalues of
V̂f
τ to be nonnegative.
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this regression λ̂τ is an estimate of the cross-sectional average of implied idiosyncratic

variances as of time τ for the L assets with options. The underlying assumption in

(6) is that the factor loadings are uncorrelated with the error term ηn,n,τ , which

reflects unobserved determinants of the idiosyncratic variance.

Let B̂τ be a matrix consisting of the regressors in (6). That is, B̂τ is the matrix

of all cross products of factor loading estimators and a constant. In this matrix, each

row represents an asset, and columns represent different combinations of the factor

loadings as well as a constant. This is an L ×
(
K(K+1)

2
+ 1
)
matrix with a generic

form (omitting time subscripts inside the matrix for brevity)

B̂τ =



β̂
2

1,1 2β̂1,1β̂1,2 · · · 2β̂1,1β̂1,K β̂
2

1,2 2β̂1,2β̂1,3 · · · 2β̂1,2β̂1,K · · · β̂
2

1,K 1

β̂
2

2,1 2β̂2,1β̂2,2 · · · 2β̂2,1β̂2,K β̂
2

2,2 2β̂2,2β̂2,3 · · · 2β̂2,2β̂2,K · · · β̂
2

2,K 1
...

...
...

...
...

...
...

...

β̂
2

n,1 2β̂n,1β̂n,2 · · · 2β̂n,1β̂n,K β̂
2

n,2 2β̂n,2β̂n,3 · · · 2β̂n,2β̂n,K · · · β̂
2

n,K 1
...

...
...

...
...

...
...

...

β̂
2

L,1 2β̂L,1β̂L,2 · · · 2β̂L,1β̂L,K β̂
2

L,2 2β̂L,2β̂L,3 · · · 2β̂L,2β̂L,K · · · β̂
2

L,K 1


.

(7)

The next theorem facilitates our second-stage estimation by establishing that

the constrained least-squares regression in (6) has a unique solution. The theorem

requires that the matrix B̂′τB̂τ be of full rank, which is equivalent to B̂τ being of full

column rank. This requirement is natural as it essentially says that cross products of

factor loadings are not linearly related, which intuitively corresponds to the factors

being suffi ciently different from each other.

Theorem 2 Suppose that B̂′τB̂τ is of full rank. Then, the problem of finding V̂f
τ

that minimizes the sum of squared residuals associated with (6) under the constraint

that V̂f
τ is symmetric and positive semidefinite has a unique solution.

Proof: See the Appendix.

In the third stage, we use the estimated factor loadings β̂τ and implied factor

variance-covariance matrix V̂f
τ to estimate the implied covariances between all assets
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– including those with no options – as the off-diagonal elements of Vr
τ , by applying

the relation in (5), i.e.,

V̂ r
m,n,τ =

K∑
k=1

K∑
l=1

V̂ f
k,l,τ β̂m,k,τ β̂n,l,τ for m,n = 1, ..., N, m 6= n.5 (8)

The three stages are then repeated for different times τ , using a rolling window

approach, yielding a time series of the implied variance-covariance matrix for the

factors V̂f
τ . The procedure also yields a time series of the implied covariances between

all N assets as well as the cross-sectional average idiosyncratic variances λ̂τ for the

first L assets. Finally, for each asset n = 1, ..., N (including assets with no options)

we can calculate the implied systematic variance at time τ , V̂ s
n,n,τ , i.e., the part of

the implied variance driven by systematic factors. Specifically, based on (6) we have

V̂ s
n,n,τ =

K∑
k=1

K∑
l=1

V̂ f
k,l,τ β̂n,k,τ β̂n,l,τ . (9)

For assets with options (n = 1, ..., L) we additionally calculate the implied idiosyn-

cratic variance as the total implied variance less the estimated systematic part,

V̂ ε
n,n,τ = V r

n,n,τ −
K∑
k=1

K∑
l=1

V̂ f
k,l,τ β̂n,k,τ β̂n,l,τ . (10)

That is, for assets with options we can decompose the implied volatility to its sys-

tematic and idiosyncratic components.

To summarize, our modified Fama-MacBeth method exploits cross-sectional vari-

ations in the factor loadings and in the implied volatility of the assets with options to

recover the implied variance-covariance matrix of the factors themselves – whether

or not they have traded options – along with the implied covariances and systematic

variances of all assets – including those without options.

5The sub-matrix of V̂r
τ restricted to the first L assets with options is not guaranteed to be positive

semidefinite, because the diagonal elements of V̂r
τ are directly observed from option prices instead

of being calculated from the factor structure. When this sub-matrix is not positive semidefinite, we
estimate its nearest symmetric positive semidefinite matrix following Higham (1988).
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With these results at hand, we can also calculate the implied covariances and

systematic variances of any portfolio of assets. For diversified portfolios with a large

number of assets, the implied idiosyncratic volatility should be small (owing to A2∗),

and the implied systematic variance will effectively capture the total implied variance.

2.3 Discussion

Before proceeding to the empirical analysis, we pause to discuss some of the model’s

features and assumptions. To gain better intuition, consider the CRSP universe

consisting of about 14000 common stocks (using our model’s notation, N ≈ 14000).

Out of these, roughly about 1000 stocks have active option trading and implied

volatility estimates (L ≈ 1000). The cross-sectional regressions in Stage 2 of our

methodology are restricted to these L assets and thus will each have about 1000

observations. The regressors in Stage 2 are the cross products of the factor betas

calculated in Stage 1. Thus, assuming the Fama-French-Carhart (Fama and French

(1993), Carhart (1997), hereafter FFC) four-factor model (K = 4), we will have

1000 observations to estimate K(K+1)
2

+ 1 = 11 parameters for the variances and

covariances of the factors and an intercept. This example demonstrates that the

assumption L >> K(K+1)
2

is essential to ensure that the cross-sectional regressions

in Stage 2 have a suffi cient number of degrees of freedom.

A feature of Stage 3 is that it allows us to estimate a large number of latent

parameters using a relatively small dataset of implied variances. The key point here

is that Stage 3 does not actually estimate any new parameters but rather applies the

estimation in Stages 1 and 2 and the factor structure to conduct direct calculations.

Indeed, the linear factor structure (1) implies that (8) and (9) must hold for all N

assets, regardless of whether they have options. We use these equations and the

parameters estimated in Stages 1 and 2 to calculate the covariances of all the 14000

CRSP assets plus their systematic variances, amounting to roughly 98 million latent

parameters. This, however, should not be surprising, as the essence of linear factor

models is to allow the estimation of a large number of asset expected returns from a

small number of factor premia along with factor loadings. The innovation here is in
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looking at the implied second (rather than first) moments of factors and individual

assets with no options, which are imputed from the implied volatilities of a subset of

assets with options.

Of course, for these estimations to be of any practical value, it must be that the

factor structure is useful in capturing variations in stock returns. Accordingly, our

two assumptions, A1 and A2, are effectively assumptions on the quality of the factor

structure in capturing stock return variation. In essence, these assumptions require

that there are no omitted factors in the model in the sense that the idiosyncratic

return is uncorrelated with the factors (A1) and uncorrelated cross-sectionally (A2).

Similar assumptions have traditionally been used to justify the arbitrage pricing the-

ory (Ross (1976b)) as they imply that idiosyncratic risk vanishes in large portfolios.

In reality, it is hard to expect any factor model to precisely satisfy A1 and A2, and

the failure of these assumptions would lead to less accurate estimates from our model.

Nevertheless, the empirical analysis below shows that applying our methodology

to a standard factor model yields a satisfactory representation of stock returns as

evidenced by the useful forward-looking insights we generate.

3 Empirical Estimation

In this section we implement the framework discussed above using CRSP stocks as

assets. While our approach would work with any factor structure for stock returns,

for concreteness we rely on the Fama-French-Carhart (FFC) four-factor model.

3.1 Data

Our data consist of all CRSP stocks with share codes 10 and 11 during January 1996

to December 2017 (13904 stocks). As the subset of stocks with traded options we

use all S&P 500 constituent stocks during the sample period with options traded

on them (1038 stocks). Our option data are drawn from OptionMetrics. We obtain

the implied volatility from the implied-volatility surface file in OptionMetrics, which

contains the Black-Scholes implied volatility for European options and the Cox-

Ross-Rubinstein implied volatility (Cox, Ross and Rubinstein (1979)) for American
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options. We take the average implied volatility of the at-the-money (ATM) call and

put options (delta equal to ±0.5) that mature in 30 days (similar to Yan (2011), An

et al. (2014), and Christoffersen, Fournier, and Jacobs (2018)). We use the square

of this average implied volatility as the option-implied variance of stock returns. We

obtain the FFC factor data from WRDS.

We begin by exploring the implied volatility of the S&P 500 constituents between

1996 and 2017. Figure 1 plots the cross-sectional average of option-implied variances

of S&P 500 stocks over time as well as the option-implied variance of the S&P 500

index. The average of option-implied variances of individual stocks fluctuates con-

siderably during the sample period. It has experienced two periods of substantial

increases, 1998—2002 and 2008—2009, respectively. The former is relatively mild, cor-

responding to the Asian financial crisis and the subsequent internet bubble, whereas

the latter is more dramatic, corresponding to the recent financial crisis. The fact

that the option-implied variances of individual stocks and the S&P 500 index follow

similar trends suggests the market volatility as a primary factor for individual stock

option-implied volatility.
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Figure 1: Option-Implied Variances of S&P 500 Stocks and S&P 500 Index

3.2 Modified Fama-MacBeth Estimation

Our methodology translates a given factor model for stock returns into a factor model

for implied variances and covariances of returns. We apply this approach to the FFC
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model in which the factors are the market excess return (mktrf), size (smb), value

(hml), and momentum (umd).6 The FFC model transforms into a ten-factor model

for implied variances.

3.2.1 First-Stage Estimation

For the first stage we estimate the factor loadings using a rolling-window approach.

Specifically, at the end of each month we estimate the factor loadings by regressing

daily excess returns of stocks on daily factors over the preceding 12-month window.

Table 1 reports cross-sectional summary statistics for the time averages of the factor

loadings for all CRSP common stocks (Panel A) and S&P 500 constituents (Panel

B). We see that the average market beta is 0.82 for CRSP stocks and is close to 1

for S&P 500 stocks. As expected, other betas can be either positive or negative. For

example, average momentum betas are negative for both CRSP and S&P 500 stocks.

3.2.2 Second-Stage Estimation

For the second stage we estimate daily constrained cross-sectional regressions as in

(6) for the subset of S&P 500 stocks. Our dependent variable is the daily implied

variance, and the independent variables are cross products of the factor loadings

estimated in the first stage. Each such daily regression results in estimates of the

requisite implied variances and covariances of the factors.

Table 2 reports summary statistics of the estimated implied factor variances and

covariances. The time averages of the implied variances of the market, size, value,

and momentum factors are 0.0402, 0.0476, 0.0219, and 0.0667, respectively. For all

factors, the mean of the estimated implied variance is higher than the median. In

addition, the minimum values of all implied variances are positive, which is guaran-

teed by our positive semidefiniteness regression constraint. The implied covariances

and correlations between two different factors, however, take different signs.

6We also perform estimation based on the CAPM one-factor model and the four-factor model
of Hou, Xue and Zhang (2015). These results are available upon request.
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3.2.3 Third-Stage Estimation

In the first stage, we have estimated for each day KN factor loadings, whereas in

the second stage, we have estimated for each day K (K + 1) /2 factor variances and

covariances, for a total of K (2N +K + 1) /2 estimated parameters. In the third

stage, we use these estimates and the factor structure to calculate for each day (i)

the N (N − 1) /2 implied covariances between the returns of all possible pairs of

individual stocks based on (8); (ii) the N implied systematic variances of all stocks

based on (9); and (iii) the L implied idiosyncratic variances for all S&P 500 stocks

based on (10). Thus, our approach recovers daily implied covariances and systematic

variances for all stocks, whether they have active option trading or not.

To illustrate the results of the third stage, we have first calculated these implied

covariances and correlations for the Dow Jones Industrial Average (DJIA) stocks

(using index composition as of September 2018).7 The estimated pairwise implied

correlation of the DJIA stocks has a mean value of 0.5871, a median of 0.7573, and

a standard deviation of 0.4323. About 88% of the implied correlations are positive.

Estimates of the factor loadings and the factor variance-covariance matrix allow

us to decompose the implied total variance of each stock into the systematic and

idiosyncratic components. Over our sample period, the average implied systematic

and idiosyncratic variances across all DJIA stocks are 0.0519 and 0.0451, and the

average ratios of the implied systematic and idiosyncratic variances to the implied

total variance are 53.5% and 46.5%, respectively.

As a second illustration, we calculate the implied covariances and systematic

variances for 30 stocks that are, in terms of their market capitalization as of Septem-

ber 2018, immediately below the S&P 500 threshold, not resorting to whether these

stocks have actively-traded options or not. The mean estimated pairwise implied

covariance of these stocks is 0.0341, and only 51% of the covariances are positive. In

addition, the average implied systematic variance of these stocks is 0.0739.

7There are 30 DJIA constituent stocks. However, one constituent, DowDuPont Inc., was formed
after the merger of Dow Chemical and DuPont in August 2017, and hence does not have available
data. As a result, we only compute the summary statistics for 29 constituent stocks (406 pairs).
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3.2.4 Comparison to Realized Moments

Before proceeding to apply our estimates, we explore whether the implied variances

and covariances estimated using our modified Fama-MacBeth approach correlate with

the corresponding realized moments. Note that our implied moments are forward

looking, and thereby we should not expect them to be perfectly correlated with

realized moments. Nevertheless, it is useful to compare the two to evaluate whether

they share similar time-series characteristics.

We first plot the estimated implied factor variances and covariances against their

realized counterparts over time at a monthly frequency.8 Figure 2 presents the factor

variances. The implied and realized market variances match closely. In particular,

the estimated implied variance captures the spikes during 1998—2002 and 2008—2009.

The implied variances of the other three factors also seem to capture the general

trends in the corresponding realized variances despite larger disparities.
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Figure 2: Implied vs. Realized Factor Variances

8At the end of each month, we estimate realized factor variances and covariances based on daily
factor returns within the month. For consistency, we construct implied variances and covariances
at monthly frequency by averaging daily estimates from the second-stage modified Fama-MacBeth
regressions within the month.
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Figure 3 further shows that the six pairwise estimated implied covariances fluc-

tuate between positive and negative numbers. These fluctuations are quite similar

to the underlying realized covariances, with the market-value pair and the market-

momentum pair having the closest match.
.1

.0
5

0
.0

5
.1

01jan1995 01jan2000 01jan2005 01jan2010 01jan2015 01jan2020
Date

Estimated Implied Covariance Realized Covariance

MKTRF and SMB Covariance

.1
.0

5
0

.0
5

.1
.1

5

01jan1995 01jan2000 01jan2005 01jan2010 01jan2015 01jan2020
Date

Estimated Implied Covariance Realized Covariance

MKTRF and HML Covariance

.3
.2

.1
0

.1
.2

01jan1995 01jan2000 01jan2005 01jan2010 01jan2015 01jan2020
Date

Estimated Implied Covariance Realized Covariance

MKTRF and UMD Covariance

.1
.0

5
0

.0
5

.1

01jan1995 01jan2000 01jan2005 01jan2010 01jan2015 01jan2020
Date

Estimated Implied Covariance Realized Covariance

SMB and HML Covariance

.3
.2

.1
0

.1

01jan1995 01jan2000 01jan2005 01jan2010 01jan2015 01jan2020
Date

Estimated Implied Covariance Realized Covariance

SMB and UMD Covariance

.1
5

.1
.0

5
0

.0
5

.1

01jan1995 01jan2000 01jan2005 01jan2010 01jan2015 01jan2020
Date

Estimated Implied Covariance Realized Covariance

HML and UMD Covariance

Figure 3: Implied vs. Realized Factor Covariances

In Figure 4 we plot the estimated implied covariance between two individual

stocks, Microsoft and P&G, over time. This is obtained from the third stage of our

modified Fama-MacBeth procedure. We have chosen these two stocks arbitrarily,

and other pairs behave quite similarly. As before, it can be seen that the estimated

implied covariance matches the trend of the realized covariance in general, despite

some discrepancies.
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Figure 4: Implied vs. Realized Covariance Between Microsoft and P&G

To sum up, while our estimated implied moments and the corresponding real-

ized moments in general feature similar time trends, we can also observe apparent

deviations between the two. These discrepancies reflect that our estimated implied

moments potentially contain differential information on the riskiness of the associated

factors and stocks.

4 Applications

We next provide three applications for our framework. First, we apply the model

to derive an implied-volatility slope (smile) for factors – even those that do not

have options written on them, and show that this slope is often indicative of future

downward jumps. Next, we construct a synthetic systematic volatility spread to

predict returns, systematic jumps, and idiosyncratic jumps for individual stocks,

which may not have actively-traded options. Finally, we show how the model can

be used to construct an optimal investment portfolio for a mean-variance investor

based on forward-looking information. A common theme of these applications is

that the recovered implied volatility and correlation contain useful forward-looking

information not captured by historical data.
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4.1 Factor Implied-Volatility Slope and Jump Risk

While the Black-Scholes model assumes that the return volatility of the underlying

asset is fixed across all strike prices, empirical evidence has shown that the implied

volatility exhibits a negative slope (smile) for both index options and individual

stock options (e.g., Bates (1991, 2003), Pan (2002), Bollen, and Whaley (2004), and

Gârleanu, Pedersen, and Poteshman (2009)). A conventional explanation for this

negative slope is that it is associated with downside jump risk (e.g., Bates (1991),

Pan (2002), Xing, Zhang, and Zhao (2010), and Yan (2011)). In this section we use

our methodology to estimate an implied-volatility slope for factors, even if they do

not possess traded options, and we show that this slope is associated with future

downward jumps.

Following Xing, Zhang, and Zhao (2010), we define the implied-volatility slope

(S) as the difference between implied volatilities of at-the-money call (
√
V ATMC) and

out-of-the-money put (
√
V OTMP ) options with 30 days to maturity,

S =
√
V ATMC −

√
V OTMP .

Intuitively, when the market expects prices to drop, put (call) options become more

(less) expensive, resulting in a higher (lower) implied volatility for puts (calls), and

thus a more negative slope. We estimate the implied-volatility slope for each of the

FFC factors by applying our modified Fama-MacBeth approach at different money-

ness levels. We continue to use January 1996 to December 2017 as our sample period

and all S&P 500 constituents within the period as the L assets with traded options.

We begin our analysis by considering the slope for the market factor, for which the

estimation is more straightforward than for the other factors, and for which we have

existing options allowing for a direct comparison. We then turn to studying the slope

for the remaining three factors for which traded options are not in existence at this

time.

4.1.1 Implied-Volatility Slope of the Market Factor

We estimate V ATMC for the market portfolio using our modified Fama-MacBeth ap-

proach applied to ATM call options of S&P 500 constituents. Similarly, we estimate
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V OTMP using OTM put options on S&P 500 constituents. Following Xing, Zhang,

and Zhao (2010), we choose a delta value of -0.2 for OTM put options, corresponding

to a strike price that is roughly 5% lower than the current stock price assuming zero

risk-free rate and implied volatility of 0.22 (a typical value for the implied volatility).

The idea is that if the values of all assets in the market lose about 5% within one

month, then the market overall should also lose 5%, representing a downward jump

of the market factor.

Column (2) of Table 3 reports summary statistics for the implied-volatility slope

of the market factor. The mean (median) is -0.0075 (-0.0084), consistent with the

negative slope documented in the literature. The standard deviation of our estimates

is 0.0237.

We next test whether our estimated market implied-volatility slope can predict

future downward jumps of the market factor. We define a downward jump as a

monthly return below the 5th percentile of the historical return distribution over our

sample period. To this end, we define a downward jump dummy DJτ that equals one

if the market excess return over month τ is lower than -7.59% and zero otherwise.

We regress this dummy on the market implied-volatility slope estimated as of the

end of the previous month over time, i.e.,

DJτ = δ0 + δ1Sτ−1 + φτ . (11)

As reported in Column (2) of Table 3, the regression coeffi cient is negative and

statistically significant at the 5% level according to Newey-West standard errors

with 5 lags.9 Thus, a more negative market implied-volatility slope is associated

with a higher likelihood of a market downward jump. In particular, a one-standard-

deviation increase in the estimated slope is associated with roughly a 5.92% drop in

the probability of a future downward jump in the market.

For comparison, we also compute the implied-volatility slope of the S&P 500

index, which is readily available from S&P 500 index options. As reported in Column
9Following Stock and Watson (2011, p. 599), we choose the number of lags for the Newey-West

test based on the rule of thumb:
L = 0.75T 1/3,

where L is the number of lags used and T is the number of observations in the time series.

22



(1) of Table 3, the mean, median, and standard deviation of the slope are -0.0460, -

0.0421, and 0.0227, respectively. Surprisingly, when we regress the market downward

jump dummy on the lagged S&P 500 implied-volatility slope, the coeffi cient is very

small in magnitude and statistically insignificant. This suggests that our estimated

market implied-volatility slope performs better than the S&P 500 implied-volatility

slope in predicting future market downward jumps. Our findings confirm that options

written on individual stocks can be aggregated to generate market-wide information,

which is not necessarily reflected in options written on an index comprised of these

individual stocks. This may be the case because, unlike with equities, there is no

mechanical aggregation of individual stock option prices into the price of an option

written on the market as a whole.

4.1.2 Implied-Volatility Slope of the Size, Value, and Momentum Factors

Similar to the case of the market factor, the ATM call implied variance, V ATMC , of

the size, value, and momentum factors can be estimated by applying the modified

Fama-MacBeth procedure to ATM call implied volatilities of S&P 500 constituents.

The estimation of the OTM put implied variance, V OTMP , is trickier, and we discuss

it below. We use the momentum factor to illustrate the main idea.

The momentum factor is a long-short portfolio with long positions in recent win-

ner firms and short positions in recent loser firms. To estimate the OTM put implied

volatility of the momentum factor, we are no longer able to use OTM put implied

volatilities of S&P 500 stocks as we did for the market factor, because winner and

loser firms typically have inverse correlation patterns with the momentum factor.

This is in contrast to the market factor, in which case nearly all firms have positive

betas. To deal with this issue, we apply the modified Fama-MacBeth approach to

OTM put implied volatilities of all winner firms at a delta of -0.2 (corresponding

to a monthly return of around -5%) and OTM call implied volatilities of all losers

firms at a delta of 0.2 (corresponding to a monthly return of around 5%). The idea

is that if all winner firms lose 5% and all loser firms gain 5% at the same time, then

overall the momentum portfolio would experience a downward jump. To apply this

procedure we need to differentiate between “winners”and “losers”. We do this based
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on the stock return correlation with the momentum factor. Namely, we define a firm

as a “winner”if its momentum beta is positive and define it as a “loser”otherwise.

Columns (3)—(5) of Table 3 report summary statistics for the implied-volatility

slope of the size, value, and momentum factors. Also reported in the table are

the estimated slope coeffi cients δ̂1 from regressing downward jump dummies of the

three factors on their corresponding estimated implied-volatility slopes over time (see

(11)). As before, the downward jump dummy is equal to one if the monthly return

of a factor drops below the 5th percentile of the historical return distribution over

our sample period. Specifically, the downward jump thresholds for the size, value,

and moment factors are -4.35%, -4.18%, and -7.97%, respectively. The resulting

regression coeffi cients for both the value and momentum factors are negative and

strongly significant, indicating that our estimated implied-volatility slope predicts

future downward jumps of these two factors. In particular, a one-standard-deviation

increase in the value (momentum) implied-volatility slope is associated with roughly

a 2.93% (5.75%) drop in the probability of a future downward jump in the value

(momentum) factor. The coeffi cient for the size factor is also negative, but not

statistically significant.10

4.2 Volatility Spread and Jump Risk

Bakshi and Kapadia (2003a,b) show that both the market index and individual stocks

exhibit a negative variance risk premium. That is, higher exposure to volatility risk

is associated with lower returns. This, in turn, implies that the stochastic discount

factor (SDF) takes larger values when variance is high. Recall that the risk-neutral

measure assigns higher probabilities to states in which the SDF is high compared

to the physical measure. Thus, the negative variance risk premium gives rise to

a positive spread between option-implied risk-neutral volatility and physical return

volatility, known as the volatility spread. Bali and Hovakimian (2009) find that the

volatility spread predicts stock returns in the cross section.

A limitation of this literature is that the volatility spread can only be calculated

10The reason that we do not have significant result for the size (small-minus-big) factor might be
that our estimation is based on big stocks only (the S&P 500 constituents).
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for stocks that have active option trading. Therefore, one cannot use this spread

to obtain insights on future returns of smaller stocks, which often do not possess

actively-traded options. For example, during December 2017 about 76% of all option

trading volume is concentrated in options written on S&P 500 stocks.

Our methodology can be used to address this limitation. For any asset n (whether

it has active option trading or not), we can calculate a synthetic systematic volatility

spread
√
V s
n,n−

√
Σs
n,n, whereby V

s
n,n is given by (9) and Σs

n,n is the asset’s historical

systematic variance. For assets with active option trading we can also calculate an

idiosyncratic volatility spread
√
V ε
n,n −

√
Σε
n,n, where V

ε
n,n is given by (10), and Σε

n,n

is the historical idiosyncratic variance associated with the factor model.

4.2.1 Motivation: Volatility Spread and Stock Returns for S&P 500
Stocks

To motivate our analysis, we will first show that the lion’s share of the effect of the

spread on future returns comes from the systematic component. For this purpose we

will apply our methodology to S&P 500 stocks, which typically do possess actively-

traded options. For each month τ , we run the following cross-sectional regression

rn,τ = δr0,τ+δ
r
s,τ

(√
V s
n,n,τ−1 −

√
Σs
n,n,τ−1

)
+δrε,τ

(√
V ε
n,n,τ−1 −

√
Σε
n,n,τ−1

)
+controlsn,τ−1+φrn,τ ,

(12)

where the control variables include the CAPM beta, firm size, book-to-market ratio,

and lagged stock return.11 We then conduct t-tests with Newey-West standard errors

on the estimated δ̂
r

s,τ and δ̂
r

ε,τ over time to see if they are significantly different from

zero. Column (1) in Panel A of Table 4 reports the result. While both δ̂
r

s,τ and

δ̂
r

ε,τ are positive and statistically significant, the economic magnitude of δ̂
r

s,τ is much

larger than that of δ̂
r

ε,τ . Increasing the systematic and idiosyncratic volatility spreads

by one standard deviation raises the monthly stock return by 0.34% and 0.12%,
11We estimate CAPM beta by regressing daily stock excess returns on daily market excess returns

over a rolling window of 12 months prior to the month of interest. We estimate firm size as the
log of the month-end market capitalization, and book-to-market is the log of the ratio of the book
value of equity to market value of equity at the end of each month. Finally, the lagged stock return
is obtained from the 12 months preceding the month of interest.
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respectively. Thus, the systematic volatility spread has an effect that is almost three

times larger than that of the idiosyncratic spread in the prediction of future stock

returns.

Similarly, we estimate the effect of the spreads on jumps in stock returns using

Jn,τ = δJ0,τ+δ
J
s,τ

(√
V s
n,n,τ−1 −

√
Σs
n,n,τ−1

)
+δJε,τ

(√
V ε
n,n,τ−1 −

√
Σε
n,n,τ−1

)
+controlsn,τ−1+φJn,τ ,

(13)

where Jn,τ is a dummy variable capturing jumps (similar to Section 4.1). We consider

both upward and downward jumps. For the FFC factors as well as individual stocks,

we define a downward (upward) jump as a monthly return below the 5th percentile

(above the 95th percentile) of the corresponding historical return distribution over

our sample period. Based on this definition, the downward jump thresholds for the

factors are the same as in Section 4.1, and the upward jump thresholds for the market,

size, value, and moment factors are 7.04%, 4.98%, 5.52%, and 7.26%, respectively.

The downward and upward jump thresholds for all S&P 500 stocks pooled together

are -15.52% and 18.42%, respectively. We further define a systematic jump of a

stock as a jump in the stock price concurrent with a jump in at least one of the four

factors, and we define an idiosyncratic jump as a jump in the stock price without

a concurrent jump in any of the four factors. We test (13) for both systematic and

idiosyncratic jumps and for downward, upward, and mixed jumps.

Columns (2)-(4) in Panel A of Table 4 show that the systematic volatility spread

positively predicts all types of systematic jumps in the cross section, whereas the

idiosyncratic volatility spread has significant predictive power only for upward and

mixed systematic jumps. For all three jump types, the economic effect of the sys-

tematic volatility spread is much larger than that of the idiosyncratic component.

For example, increasing the systematic volatility spread by one standard deviation is

associated with an increase in the probability of future systematic jumps (downward

and upward pooled together) by 1.57%, as opposed to 0.17% for the idiosyncratic

spread. Columns (5)-(7) show similar dominance of the systematic spread for idio-

syncratic jumps.

In conclusion, the effect of the volatility spread on stock returns and on return
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jumps is largely captured by the systematic component of the spread. We next use

this result to apply our methodology to smaller stocks, which rarely have actively-

traded options.

4.2.2 Volatility Spread and Jump Risk for Non S&P 500 Stocks

As noted above, our methodology can be used to calculate the systematic spread,√
V s
n,n−

√
Σs
n,n, for all stocks, even if they do not have actively-traded options. And,

as we have seen, the systematic spread is capturing the lion’s share of the predictive

power of the total spread for returns and jumps. Thus, we repeat our regressions

(12) and (13) without the idiosyncratic spread applied to all non S&P 500 stocks in

each month during our sample period.

Panel B of Table 4 reports the average regression coeffi cients. The results in

Column (2)-(7) show that the synthetic systematic spread is useful in predicting

both systematic and idiosyncratic jumps of all types. For example, a one-standard-

deviation increase in the systematic volatility spread is associated with 1.00% and

1.90% increases in the probabilities of future systematic and idiosyncratic jumps,

respectively. These are large increases as the unconditional probability of jumps is

(by our definition) just 10%. In contrast to the results in Panel A, the systematic

spread does not help in predicting non-jump returns as reflected in the insignificant

coeffi cient in Column (1) (although adding the spread to the regression does increase

the adjusted R-squared from 3% to 4%).

Overall, the findings in this section show that the predictive power of the volatil-

ity spread on future stock returns and jumps mainly comes from the systematic

component. Furthermore, our methodology establishes that the systematic volatility

spread continues to be informative on the future likelihood of jumps even for stocks

with illiquid or no traded options.

4.3 Optimal Portfolio Choice with Forward-LookingMoments

Consider a Markowitz mean-variance framework in which an investor’s utility in-

creases with the expected return and decreases with the variance of her portfolio.
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Specifically, an investor’s utility function U takes the form

U = µp −
γ

2
σ2
p,

where µp represents the mean return of the investor’s portfolio, σp stands for the

return volatility of her portfolio, and γ is the risk aversion level of the investor.

Suppose the investment opportunity set consists of N risky assets and a risk-free

asset. The expected returns of the N risky assets are given by µr = (µ1, µ2, ..., µN)′ ,

the variance-covariance matrix of the risky assets is Σr, and the risk-free return is

rf . The investor chooses weights for the N risky assets w = (w1, w2, ..., wN)′ and

a weight for the risk-free asset w0 to maximize her utility function. The investor’s

utility maximization problem is then given by

max
w0,w

w0rf + w′µr−γ
2

w′Σrw, (14)

s.t. w0 + w′e = 1,

where e is an N × 1 vector of ones.

A standard approach to solving this optimization problem is to use historical

moments of asset returns. Instead, our modified Fama-MacBeth approach yields a

forward-looking implied variance-covariance matrix, and we can use it to solve for

the optimal investment portfolio. Such an optimal portfolio can be calculated at

high frequency (e.g., daily or even intradaily) from option prices and reflect real-

time changes in investors’expectations. This is in contrast to a strategy based on

historical variance-covariance matrices, which features slow-moving portfolio weights

over time. Note that our recovered variance-covariance matrix is calculated under

the risk-neutral measure, whereas (14) is calculated under the physical measure,

introducing a potential bias in our estimation. Nevertheless, our approach offers a

unique setting for the estimation of forward-looking moments, and as we show below,

this key feature leads to superior performance as compared to historical estimates,

despite this potential bias.

To demonstrate the investment value of using our forward-looking moments, we

use the nine SPDR sector ETFs as the set of risky assets and a 30-day T-bill as a
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risk-free asset. Data on the SPDR sector ETFs are available starting from December

1998. We solve (14) based on historical and forward-looking variance-covariance

matrices, respectively, at a monthly frequency. We estimate annualized historical

variances and covariances at the end of each month based on daily equity returns of

the most recent 12-month rolling window. The forward-looking variance-covariance

matrix is estimated at the end of each month from the third stage of our modified

Fama-MacBeth approach.

Solving (14) also requires estimates of the expected returns of the sector ETFs.

To focus on the differential information from the second moments, we employ the

same method to estimate µr for both cases. Specifically, we rely on the arbitrage

pricing theory based on the FFC four-factor model:

µr = rfe + βµf ,

where µf is a 4 × 1 vector of expectations of the factors. Empirically, we use an-

nualized 120-month rolling averages of the factors as estimates of µf . In addition,

we use conventional risk aversion levels of 3 and 5 as values of γ in (14), similar to

Rapach, Strauss and Zhou (2010).

The optimal weights from (14) under both forward-looking and historical infor-

mation involve rather large short positions. This is due to the high correlations

across different sectors. To make our portfolios more feasible, we impose constraints

on the shorting weights. Specifically, we consider both the case without short selling

(wi ≥ 0, ∀i = 0, 1, ..., N) and the case allowing moderate short selling (wi ≥ −1,

∀i = 0, 1, ..., N).

Table 5 reports the performance of the monthly-rebalanced optimal investment

portfolios obtained using historical and forward-looking variances and covariances.

For both levels of γ and both types of short-selling constraints, the average and

median returns are uniformly much higher based on forward-looking information than

historical information. On the other hand, the return volatility of portfolios obtained

from forward-looking information is not always higher than that based on historical

moments. For example, when γ = 3 and no short selling is allowed, the monthly

mean (median) returns of the forward-looking and historical strategies are 0.58% vs.
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0.32% (0.86 vs. 0.60%), respectively, while the corresponding volatilities are 3.99%

and 4.13%. Accordingly, the Sharpe ratio of the forward-looking strategy is always

higher than that of the historical strategy. Their difference is economically large and

statistically significant in most cases applying HAC standard errors (Ledoit and Wolf

(2008)).12 Furthermore, our forward-looking strategy is always more right-skewed

and less heavy-tailed (reflected in higher skewness and lower kurtosis). Both features

are considered attractive to investors. Thus, while our forward-looking moments are

potentially biased being estimated under the risk-neutral measure, empirically the

bias is dwarfed by their superior information content on future returns.

We next consider an alternative strategy, which could also potentially provide

improvement relative to the historical benchmark. This strategy estimates the

variances and covariances using the dynamic conditional correlation multivariate

GARCH model (Engle and Sheppard (2001)). The results are also reported in Table

5. In all four cases, the GARCH method provides limited improvement compared to

historical estimates, with the Sharpe ratio being somewhat higher than the histori-

cal Sharpe ratio, but the difference is never statistically significant. Importantly, our

forward-looking strategy beats both the historical and GARCH methods in every

single case.

We end this section with an extreme example, illustrating the differential infor-

mation reflected in forward-looking versus historical variance-covariance matrices.

We have calculated (but do not report for brevity) the variance-covariance matri-

ces and the corresponding correlation matrices estimated based on historical and

forward-looking information as of December 2008. This month was at the height of

the financial crisis, right before asset prices reached the trough level in early 2009.

We find that the average historical variance across all sectors is 0.0728, corresponding

to a volatility of 27%. By contrast, the average forward-looking risk-neutral variance

is 0.1976, corresponding to a volatility of 44%. Similarly, the average historical and

forward-looking correlations are 0.4026 and 0.9313, respectively.

12The HAC standard errors account for potential autocorrelation and heavy tails in the time
series of returns. The only case in which we do not have statistical significance is when γ = 3 and
no short selling is allowed. The associated p-value for this case is 0.1039.
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It is hard to tell what portion of the increase in volatility and correlation comes

from the change in measure, and what part reflects forward-looking information

about heightened volatility and higher correlation during the crisis period. To gauge

these two components, we compute the realized variance and correlation of the sec-

tors in January 2009 based on daily sector returns and use these quantities as the

ex-post realized moments under the physical measure.13 The average ex-post realized

variance across the sectors is 0.2872, corresponding to a volatility of 54%, and the

average ex-post realized correlation is 0.8234. These numbers, which are much higher

than the historical moments, indicate that our forward-looking moments, while esti-

mated under the risk-neutral measure, contain useful information on future changes

of asset return volatilities. Thus, in December 2008, investors indeed expected sector

returns to be both more volatile and way more correlated than reflected in historical

moments. Such patterns are rather typical during crisis periods (Roll (1988), Schwert

(1990), Jorion (2000), Ang and Chen (2002), and Hong, Tu, and Zhou (2007)).

5 Conclusion

In this paper, we present a novel methodology for recovering implied variances and

covariances of both individual assets and portfolios that may not have actively-

traded options. We start with a linear factor structure of stock returns and derive a

corresponding factor model for the return variance, in which the new factors are the

variances and covariances of the original factors and the new factor loadings are cross

products of the original factor loadings. We propose a three-stage modification of

the Fama-MacBeth approach to estimating this new factor model, yielding forward-

looking estimates of the implied volatilities and correlations of both factors and

stocks. Empirically, we demonstrate the usefulness of our framework by applying it

to form optimal investment portfolios and to predict jumps of both the factors and

individual stocks.

In addition to the examples provided in this paper, our methodology could po-

13To match with the 30-day maturity of options used to obtain our forward-looking estimates,
here we use daily returns within one month to compute the ex-post realized variance and correlation.
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tentially lend itself to many more applications. One possible direction is to examine

the correlation risk premium, as captured by the difference between our estimated

implied correlations and the realized ones, as well as its effects on asset prices (e.g.,

Driessen, Maenhout, and Vilkov (2009) and Buss, Schönleber, and Vilkov (2018)).

Another potential path is to back out prices of synthetic options for factors and

assets with no existing traded options. These synthetic options may have implica-

tions for risk management. Furthermore, a similar factor-based approach to the one

presented here may be used for recovering higher forward-looking moments, such as

skewness and kurtosis, and for testing their usefulness for investment decisions. We

leave these for future research.
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Appendix: Proof of Theorem 2

In the proof we omit all time subscripts for brevity. Let V be a symmetric K ×K
matrix and let λ be a constant. We can identify with (V, λ) a column vector pV,λ of

dimension
(
K(K+1)

2
+ 1
)
× 1 by simply stacking the rows of the upper right triangle

of V and then adding λ as follows

pV,λ = (V1,1, V1,2, ..., V1,K , V2,2, V2,3, ..., V2,K , ..., VK,K , λ)′ .

Given (V,λ) , define the least-squares loss function L : R
K(K+1)

2
+1 → R

L (V, λ) =
∥∥∥Diag (Vr)− B̂pV,λ

∥∥∥2

,
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where Diag (Vr) is the L × 1 vector consisting of the diagonal elements of Vr rep-

resenting implied variances of the L assets with options, B̂ is given by (7), and ‖·‖
denotes the Euclidean norm in RL.
Let V denote the set of K ×K positive semidefinite matrices. The constrained

least squares optimization problem corresponding to the regression model in (6) is

min
V∈V,λ∈R

L (V, λ) . (15)

We first prove the following two lemmas.

Lemma 1 V× R is a convex and closed (in the Euclidean topology) subset of RK(K+1)
2

+1.

Proof of Lemma 1: It is suffi cient to show that V is convex and closed in R
K(K+1)

2 .

To see the convexity of V, consider V1,V2 ∈ V and a nonzero K × 1 vector x.

Let α ∈ [0, 1] and let V∗ = αV1 + (1− α) V2. Then,

x′V∗x = αx′V1x + (1− α) x′V2x ≥ 0,

where the inequality follows from positive semidefiniteness of V1 and V2.

The closedness of V follows because Euclidean convergence implies convergence
of each element of the matrices and by continuity of matrix multiplication. �

Lemma 2 Let B be an L×
(
K(K+1)

2
+ 1
)
matrix such that B′B is of full rank. Then,

there exists an ε > 0 such that ‖Bq‖ > ε for all q ∈ RK(K+1)
2

+1 with ‖q‖ = 1.

Proof of Lemma 2: Suppose this is not the case, then there exists a sequence
{qi} ∈ RK(K+1)

2
+1 such that ‖qi‖ = 1 for all i and

∥∥Bqi
∥∥ → 0. Since the set of

all q ∈ RK(K+1)
2

+1 such that ‖q‖ = 1 is compact in the Euclidean norm, there is a

convergent subsequence {qij} converging to q∗ such that ‖q∗‖ = 1. Now,

‖Bq∗‖ = lim
j→∞

∥∥Bqij
∥∥ = lim

i→∞

∥∥Bqi
∥∥ = 0,

where the first equality follows by the continuity of the Euclidean norm and matrix

multiplication, and the second and third since
∥∥Bqi

∥∥ is converging to zero. But,
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‖Bq∗‖ = 0 if and only if each of the elements of Bq∗ is zero. It follows that (B′B) q∗

is a vector of zeros in R
K(K+1)

2
+1. Since ‖q∗‖ = 1, we have that q∗ is not a vector of

zeros. This contradicts the assumption that B′B is of full rank. �

Proof of Theorem 2: L is a strictly convex function, and by Lemma 1 the domain
of minimization is a convex set in R

K(K+1)
2

+1. Hence, if a solution to (15) exists, it

must be unique. Therefore, we are left to prove that a solution exists.

Let

L = inf
V∈V,λ∈R

L (V, λ) .

Then, there is a sequence {Li} converging to L, and a sequence of
{
Vi,λi

}
, where

Vi ∈ V, such that Li = L
(
Vi,λi

)
. Let

{
pVi,λi

}
denote the corresponding sequence

of vectors in R
K(K+1)

2
+1. To prove existence of a solution of (15), it is suffi cient to

show that
{
pVi,λi

}
has a bounded subsequence in the Euclidean topology. Indeed,

if
{

pVij ,λij

}
is such a subsequence, then it has a convergent subsequence to a limit,

which we denote by p∗ ∈ RK(K+1)
2

+1. Let (V∗, λ∗) be the corresponding matrix and

constant. Since V is closed (by Lemma 1), we have that V∗ ∈ V, and by the
continuity of L, L = L (V∗, λ∗) . Therefore, (V∗, λ∗) is a solution to (15).

Thus, it remains to show that
{
pVi,λi

}
has at least one bounded subsequence.

Suppose to the contrary that all subsequences
{

pVij ,λij

}
are unbounded, i.e.,

∥∥∥pVij ,λij∥∥∥→
+∞. Consider the ratio√

L
(
Vij , λij

)∥∥∥pVij ,λij∥∥∥ =

∥∥∥Diag (Vr)− B̂pVij ,λij

∥∥∥∥∥∥pVij ,λij∥∥∥
=

∥∥∥∥∥∥Diag (Vr)∥∥∥pVij ,λij∥∥∥ −
B̂pVij ,λij∥∥∥pVij ,λij∥∥∥

∥∥∥∥∥∥ .
Note that ∥∥∥∥∥∥ pVij ,λij∥∥∥pVij ,λij∥∥∥

∥∥∥∥∥∥ = 1.
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By Lemma 2, there is an ε > 0 such that for all ij,∥∥∥∥∥∥ B̂pVij ,λij∥∥∥pVij ,λij∥∥∥
∥∥∥∥∥∥ > ε.

It follows that∥∥∥∥∥∥Diag (Vr)∥∥∥pVij ,λij∥∥∥ −
B̂pVij ,λij∥∥∥pVij ,λij∥∥∥

∥∥∥∥∥∥ ≥
∥∥∥∥∥∥ B̂pVij ,λij∥∥∥pVij ,λij∥∥∥

∥∥∥∥∥∥−
∥∥∥∥∥∥Diag (Vr)∥∥∥pVij ,λij∥∥∥

∥∥∥∥∥∥
> ε−

∥∥∥∥∥∥Diag (Vr)∥∥∥pVij ,λij∥∥∥
∥∥∥∥∥∥ .

When j →∞, Diag(Vr)∥∥∥∥pVij ,λij
∥∥∥∥ converges to 0 since

∥∥∥pVij ,λij∥∥∥→ +∞. Thus, there exists a

j0 suffi ciently large such that for all j > j0,∥∥∥∥∥∥Diag (Vr)∥∥∥pVij ,λij∥∥∥
∥∥∥∥∥∥ < ε

2
.

We conclude that for j > j0, √
L
(
Vij , λij

)∥∥∥pVij ,λij∥∥∥ >
ε

2
.

Since
∥∥∥pVij ,λij∥∥∥ → +∞, this implies that L

(
Vij , λij

)
→ +∞. However, this con-

tradicts that L
(
Vij , λij

)
→ L < +∞. Thus,

{
pVi,λi

}
has at least one bounded

subsequence. This completes the proof. �
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Table 1: First-Stage Factor Loadings

This table reports summary statistics for factor loadings estimated in the first stage of the modified Fama-

MacBeth procedure based on the Fama-French-Carhart four-factor model. The sample period is January 1996 to

December 2017. Panel A considers all CRSP common stocks (share code 10 or 11) and Panel B considers all S&P 500

stocks during the sample period. At the end of each month, we estimate the betas of each stock by regressing daily

stock excess returns on daily factor returns over 12-month rolling windows. For each stock, we compute the average

of each factor loading over time. The table reports the cross-sectional summary statistics of these time averages.

Panel A: All CRSP Common Stocks
Obs Mean Median S.D. Min Max

βmktrf 13,904 0.8233 0.8420 0.5707 -7.5030 9.0293
βsmb 13,904 0.7195 0.6896 0.6920 -6.7965 10.2517
βhml 13,904 0.1604 0.2175 0.7937 -10.7894 11.8929
βumd 13,904 -0.1299 -0.0775 0.5808 -17.0211 5.7203

Panel B: All S&P 500 Stocks
Obs Mean Median S.D. Min Max

βmktrf 1,038 1.0617 1.0652 0.2599 0.1030 2.0785
βsmb 1,038 0.1920 0.1665 0.3411 -0.8759 1.6330
βhml 1,038 0.1533 0.2091 0.5513 -3.5318 3.0138
βumd 1,038 -0.0931 -0.0637 0.2335 -1.3157 0.9393
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Table 2: Second-Stage Implied Factor Variances and Covariances

This table reports summary statistics for the estimated implied variances, covariances, and correlations of the

Fama-French-Carhart four factors. These estimates are obtained from the second-stage modified Fama-MacBeth

regressions (6) based on factor loadings summarized in Table 1. The sample period is January 1996 to December

2017 and the data consist of all S&P 500 constituent stocks during this period.

Mean Median S.D. Min Max
V fmktrf,mktrf 0.0402 0.0270 0.0424 0.0005 0.5623

V fsmb,smb 0.0476 0.0355 0.0423 0.0040 0.4732

V fhml,hml 0.0219 0.0183 0.0175 0.0000 0.1872

V fumd,umd 0.0667 0.0401 0.0723 0.0010 0.5410

V fmktrf,smb 0.0147 0.0158 0.0164 -0.1202 0.0824

V fmktrf,hml -0.0086 -0.0069 0.0193 -0.1136 0.1336

V fmktrf,umd -0.0054 0.0003 0.0344 -0.2600 0.1199

V fsmb,hml -0.0021 -0.0028 0.0178 -0.0888 0.1582

V fsmb,umd -0.0047 -0.0010 0.0324 -0.4107 0.1358

V fhml,umd -0.0049 -0.0033 0.0232 -0.1501 0.1163

ρfmktrf,smb 0.4926 0.5668 0.3388 -0.8891 0.9999

ρfmktrf,hml -0.3534 -0.4091 0.4526 -0.9999 0.9998

ρfmktrf,umd -0.0578 0.0031 0.4751 -0.9999 0.9866

ρfsmb,hml -0.0914 -0.1208 0.4333 -0.9998 0.9999

ρfsmb,umd -0.0682 -0.0178 0.4507 -0.9999 0.9997

ρfhml,umd -0.1572 -0.1866 0.4846 -0.9999 1.0000
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Table 3: Factor Implied-Volatility Slope and Downward Jump Risk

This table reports summary statistics for the estimated implied-volatility slopes of the market, size, value, and

momentum factors. The implied-volatility slope for each factor is estimated by applying the modified Fama-MacBeth

procedure. The sample period is January 1996 to December 2017, and the data consist of all S&P 500 constituents

within this period. We also report the slope coeffi cient from regressing the downward jump dummy of each factor

on the corresponding estimated implied-volatility slope available at the end of the previous month (see (11)). For

comparison purposes, we also include summary statistics and the estimated regression coeffi cient for the market

implied-volatility slope directly obtained from S&P 500 index options. Newey-West standard errors with 5 lags are

displayed in parentheses below the corresponding estimates. Asterisks denote statistical significance at the 1% (***),

5% (**) and 10% (*) levels.

(1) (2) (3) (4) (5)
S&P 500 mktrf smb hml umd

Mean -0.0460 -0.0075 -0.0154 0.0022 -0.0126
Median -0.0421 -0.0084 -0.0097 0.0043 -0.0078
S.D. 0.0227 0.0237 0.0531 0.0280 0.0377
Min -0.2362 -0.1659 -0.5509 -0.2302 -0.2785
Max 0.0556 0.1195 0.4030 0.2148 0.2804
Reg Coef -0.2492 -2.4994 -0.1617 -1.0465 -1.5259

(0.2287) (1.1846)** (0.2017) (0.4553)** (0.6586)**
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Table 4: Predictive Power of Systematic and Idiosyncratic Volatility
Spreads

This table reports results of predicting monthly returns, systematic jumps, and idiosyncratic jumps using volatil-

ity spreads. The sample period is January 1996 to December 2017. Panel A predicts returns and jumps for all S&P

500 stocks during the sample period using the systematic volatility spread (
√
V sn,n −

√
Σsn,n) and the idiosyncratic

volatility spread (
√
V εn,n−

√
Σεn,n) based on the Fama-French-Carhart four-factor model. Panel B includes all CRSP

non S&P 500 common stocks (share code 10 or 11) using only the systematic volatility spread. We define a systematic

jump as a jump in the stock price concurrent with a jump in at least one of the four factors and an idiosyncratic

jump as a jump in the stock price without a concurrent jump in any of the factors. We perform regressions (12)

and (13) monthly and report time averages of the estimated slope coeffi cients in the table. The risk-neutral sys-

tematic and idiosyncratic variances, V sn,n and V
ε
n,n, are estimated using our modified Fama-MacBeth approach ((9)

and (10)), and the physical systematic and idiosyncratic variances, Σsn,n and Σεn,n, are estimated using daily equity

returns over each month. The control variables include the CAPM beta, β, firm size, Ln(Size), book-to-market

ratio, Ln(B/M), and lagged stock return, LagRet. We estimate beta by regressing daily stock excess returns on

daily market excess returns over a rolling window of 12 months prior to the month of interest. We estimate firm size

as the log of the month-end market capitalization, and book-to-market is the log of the ratio of the book value of

equity to market value of equity at the end of each month. The lagged stock return is obtained from the 12 months

preceding the month of interest. Newey-West standard errors with 5 lags are reported in the parentheses. Asterisks

denote significance at the 1% (***), 5% (**) and 10% (*) levels.

Panel A: Predictive Power of Systematic and Idiosyncratic Volatility Spreads for S&P 500 Stocks
Return Systematic Jump Idiosyncratic Jump
(1) (2) (3) (4) (5) (6) (7)

Downward Upward Mixed Downward Upward Mixed√
V sn,n −

√
Σsn,n 0.0316 0.0337 0.0719 0.1462 0.2096 0.2253 0.4680

(0.0124)** (0.0146)** (0.0156)*** (0.0270)*** (0.0218)*** (0.0209)*** (0.0448)***√
V εn,n −

√
Σεn,n 0.0072 -0.0017 0.0091 0.0103 0.0189 0.0324 0.0437

(0.0032)** (0.0029) (0.0028)*** (0.0037)*** (0.0056)*** (0.0060)*** (0.0103)***
β -0.0001 0.0160 0.0140 0.0386 0.0328 0.0295 0.0388

(0.0039) (0.0053)*** (0.0036)*** (0.0081)*** (0.0053)*** (0.0042)*** (0.0055)***
Ln(Size) -0.0028 -0.0014 -0.0030 -0.0052 -0.0034 -0.0072 -0.0111

(0.0006)*** (0.0006)** (0.0009)*** (0.0013)*** (0.0005)*** (0.0008) (0.0010)***
Ln(B/M) 0.0003 0.0016 0.0005 0.0024 -0.0004 0.0003 -0.0012

(0.0007) (0.0007)** (0.0009) (0.0012)** (0.0008) (0.0008) -0.0010
LagRet 0.0027 -0.0046 -0.0047 -0.0140 -0.0152 -0.0052 -0.0142

(0.0035) (0.0020)** (0.0035) (0.0057)** (0.0042)*** (0.0045) (0.0056)**

Panel B: Predictive Power of Systematic Volatility Spread for Non S&P 500 Stocks
Return Systematic Jump Idiosyncratic Jump
(1) (2) (3) (4) (5) (6) (7)

Downward Upward Mixed Downward Upward Mixed√
V sn,n −

√
Σsn,n 0.0056 0.0224 0.0251 0.0706 0.0844 0.0725 0.1338

(0.0087) (0.0066)*** (0.0065)*** (0.0143)*** (0.0088)*** (0.0081)*** (0.0132)***
β 0.0014 0.0120 0.0115 0.0298 0.0211 0.0182 0.0331

(0.0026) (0.0036)*** (0.0026)*** (0.0066)*** (0.0026)*** (0.0022)*** (0.0026)***
Ln(Size) -0.0021 -0.0035 -0.0036 -0.0100 -0.0125 -0.0162 -0.0258

(0.0009)** (0.0008)*** (0.0008)*** (0.0019)*** (0.0007)*** (0.0010)*** (0.0012)***
Ln(B/M) 0.0052 -0.0025 -0.0009 -0.0044 -0.0102 -0.0053 -0.0145

(0.0012)*** (0.0008)*** (0.0008) (0.0014)*** (0.0008)*** (0.0007)*** (0.0012)***
LagRet 0.0011 -0.0035 -0.0020 0.0089 -0.0099 -0.0033 -0.0099

(0.0021) (0.0016)** (0.0018) (0.0033)*** (0.0019)*** (0.0019)* (0.0028)***

44



Table 5: Optimal Portfolio Choice

This table reports the performance of monthly-rebalanced optimal investment portfolios obtained based on three

methods of variance and covariance estimation: historical, forward-looking, and GARCH. The historical moments

are computed based on daily equity returns over the past 12-month window, the forward-looking moments are

estimated using our modified Fama-MacBeth approach based on the Fama-French-Carhart four-factor model, and

the GARCH moments are estimated using the dynamic conditional correlation multivariate GARCH model. The

optimal portfolios are obtained by solving (14) using the nine SPDR sector ETFs as risky assets applying a 30-day

T-bill as a risk-free asset. The sample period is December 1998 to December 2017. We consider cases with no short

selling and with limited short selling for risk aversion levels of 3 and 5. We also report the improvement in the

Sharpe ratio of the forward-looking and GARCH methods relative to the historical strategy. HAC standard errors

are displayed in parentheses below the corresponding estimates. Asterisks denote statistical significance at the 1%

(***), 5% (**) and 10% (*) levels.

Panel A: No Short Selling
γ = 3 γ = 5

Historical Forward-Looking GARCH Historical Forward-Looking GARCH
Mean 0.0032 0.0058 0.0038 0.0020 0.0052 0.0037
Median 0.0060 0.0086 0.0055 0.0038 0.0052 0.0032
Vol 0.0413 0.0399 0.0397 0.0321 0.0356 0.0329
Skew -0.7129 -0.0108 -0.3668 -0.4469 -0.0702 -0.2597
Kurt 5.9162 4.2637 4.0652 5.3590 4.0449 4.0120
SR 0.2685 0.5024 0.3313 0.2125 0.5091 0.3925
∆SR 0.2339 0.0628 0.2966 0.1800

(0.1438) (0.1209) (0.1393)** (0.1181)
Panel B: Limited Short Selling

γ = 3 γ = 5
Historical Forward-Looking GARCH Historical Forward-Looking GARCH

Mean 0.0024 0.0332 0.0057 0.0011 0.0312 0.0042
Median 0.0059 0.0372 0.0056 0.0035 0.0257 0.0055
Vol 0.0638 0.1994 0.0744 0.0408 0.1880 0.0514
Skew -0.1605 0.1279 0.1091 -0.2397 0.3724 0.1118
Kurt 4.8457 3.9806 3.5734 5.0895 4.3895 3.6012
SR 0.1289 0.5773 0.2632 0.0930 0.5756 0.2840
∆SR 0.4484 0.1343 0.4825 0.1910

(0.2421)* (0.1424) (0.2508)* (0.1579)
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